Name	Answer Key	

Date

Pd

AP Calculus BC: Quarter 4 Gateway Exam (20 min) Passing Score = 75% Correct

1. The Logistic Differential Equation: $\frac{dy}{dt} = ky \left(1 - \frac{y}{L}\right)$

The Logistic Equation:

$y = \frac{L}{1 + he^{-kt}}$

2. Area of a Region Between Two Curves:

If f and g are continuous on [a, b] and $g(x) \le f(x)$ for all x in [a, b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is: $A = \int_{a}^{b} (f(x) - g(x)) dx$

3. The Washer Method: To find the volume of a solid of revolution with the washer method, use one of the following:

Horizontal axis of revolution on [a, b]: $V = \pi \int_{a}^{b} ((R(x))^{2} - (r(x))^{2}) dx$

Vertical axis of revolution on [c, d]:
$$V = \pi \int_{c}^{d} \left(\left(R(y) \right)^{2} - \left(r(y) \right)^{2} \right) dy$$

4. Volumes of Solids with Known Cross Sections:

On [a, b], for cross sections of area A(x) taken perpendicular to the x-axis: $V = \int_a^b A(x) dx$ On [c, d], for cross sections of area A(y) taken perpendicular to the y-axis: $V = \int_{c}^{d} A(y) dy$

5. Definition of Arc Length:

For a smooth curve y = f(x), the arc length of f between a and b is: $s = \int_{a}^{b} \sqrt{1 + (f'(x))^{2}} dx$

For a smooth curve x = g(y), the arc length of g between c and d is: $s = \int_{c}^{d} \sqrt{1 + (g'(y))^{2}} dy$

6. Integration by Parts:

If *u* and *v* are functions of *x* and have continuous derivatives, then: $\int u \, dv = uv - \int v \, du$

7. L'Hôpital's Rule:

Let f and g be functions that are differentiable on an interval (a, b) containing c, except possibly at c itself. Assume that $g'(x) \neq 0$ for all x in (a, b), except possibly at c itself.

$$\lim_{x \to c} f(x) = 0 \quad \text{and} \quad \lim_{x \to c} g(x) = 0 \quad (\text{OR}) \quad \lim_{x \to c} f(x) = -\infty \text{ or } \infty \quad \text{and} \quad \lim_{x \to c} g(x) = -\infty \text{ or } \infty$$

then $\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$ provided the limit on the right exists (or is infinite).

- 8. The *n*th-Term Test: If $\lim_{n \to \infty} a_n \neq 0$, then $\sum_{n=N}^{\infty} a_n$ diverges.
- 9. Geometric Series: A geometric series with ratio r diverges if $|r| \ge 1$.
 - If 0 < |r| < 1, then the series converges to the sum $\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}$.
- 10. Definition of *n*th Taylor Polynomial: If f has n derivatives at c, then the *n*th Taylor polynomial for f at c is:

$$P_n(x) = \frac{f(c) + f'(c)(x-c) + \frac{f''(c)}{2!}(x-c)^2 + \dots + \frac{f^{(n)}(c)}{n!}(x-c)^n}{n!}$$

11. Lagrange Error Bound: If $\max |f^{(n+1)}(z)|$ is the maximum value of $f^{(n+1)}(z)$ between x and c, then:

$$R_n(\mathbf{x}) \le \frac{\max |f^{(n+1)}(\mathbf{z})|}{(n+1)!} |\mathbf{x}-\mathbf{c}|^{n+1}$$

12. Definition of Power Series:

If x is a variable, then an infinite series of the form below is called a power series centered at c:

$$\sum_{n=0}^{\infty} a_n (x-c)^n = a_0 + a_1 (x-c) + a_2 (x-c)^2 + \dots + a_n (x-c)^n + \dots$$

13. The Ratio Test: Let $\sum_{n=N}^{\infty} a_n$ be a series with nonzero terms. $\sum_{n=N}^{\infty} a_n$ <u>converges absolutely</u> if $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$.

$$\sum_{n=N}^{\infty} a_n \quad \underline{\text{diverges}} \quad \text{if} \quad \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1 \quad \text{or} \quad \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$$

The Ratio Test is inconclusive if $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$.

14. The Integral Test: If f is <u>positive</u>, <u>continuous</u>, and <u>decreasing</u> for $x \ge N$ and $a_n = f(n)$,

then
$$\sum_{n=N}^{\infty} a_n$$
 and $\int_{N}^{\infty} f(x) dx$ either both converge or both diverge.

- 15. *p*-Series: The *p*-series $\sum_{n=N}^{\infty} \frac{1}{n^p}$ converges if p > 1, and diverges if 0 .
- 16. Direct Comparison Test: Let $0 < a_n \le b_n$ for all n.

If
$$\sum_{n=N}^{\infty} b_n$$
 converges, then $\sum_{n=N}^{\infty} a_n$ converges. If $\sum_{n=N}^{\infty} a_n$ diverges, then $\sum_{n=N}^{\infty} b_n$ diverges.

17. Limit Comparison Test:

Suppose that
$$a_n > 0$$
, $b_n > 0$, and $\lim_{n \to \infty} \frac{a_n}{b_n} = L$, where L is finite and positive.

Then the two series $\sum_{n=N}^{\infty} a_n$ and $\sum_{n=N}^{\infty} b_n$ either <u>both converge</u> or <u>both diverge</u>.

18. Alternating Series Test: Let $a_n > 0$.

The alternating series $\sum_{n=N}^{\infty} (-1)^n a_n$ and $\sum_{n=N}^{\infty} (-1)^{n+1} a_n$ <u>converge</u> if the following two conditions are met:

- (1) $\lim_{n \to \infty} a_n = 0$ and (2) $a_{n+1} \le a_n$ for all $n \ge N$
- 19. Alternating Series Remainder: Let $a_n > 0$. If an alternating series $\sum_{n=0}^{\infty} (-1)^n a_n$ converges to *S*,

and S_N is used to approximate the sum, then: $|S - S_N| \le a_{N+1}$

20. Definitions of Absolute and Conditional Convergence:

$$\sum_{n=N}^{\infty} a_n \text{ is } \underline{\text{absolutely convergent}} \text{ if } \underline{\sum_{n=N}^{\infty} |a_n|} \text{ converges.}$$

$$\sum_{n=N}^{\infty} a_n \text{ is } \underline{\text{conditionally convergent}} \text{ if } \underline{\sum_{n=N}^{\infty} a_n} \text{ converges but } \underline{\sum_{n=N}^{\infty} |a_n|} \text{ diverges.}$$

21. Absolute Convergence: If the series $\sum_{n=N}^{\infty} |a_n|$ converges, then the series $\sum_{n=N}^{\infty} a_n$ also converges.

22. Definition of Taylor Series:

If a function f has derivatives of all orders at x = c, then the series below is called the Taylor series for f(x) at c.

$$\frac{\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n = f(c) + f'(c)(x-c) + \frac{f''(c)}{2!} (x-c)^2 + \dots + \frac{f^{(n)}(c)}{n!} (x-c)^n + \dots}{n!} (x-c)^n + \dots}{n!}$$
23. Power Series for Elementary Functions: $e^x = \sum_{n=0}^{\infty} \frac{x_n}{n!} = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots}{n!}$
24. Power Series for Elementary Functions: $\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + \frac{(-1)^n x^{2n+1}}{(2n+1)!} + \dots$
25. Power Series for Elementary Functions: $\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + \frac{(-1)^n x^{2n}}{(2n)!} + \dots$
26. Power Series for Elementary Functions: $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots + x^n + \dots$

27. Slope in Polar Form: Let $r(\theta)$ be a differentiable function, with $x(\theta) = r \cos(\theta)$ and $y(\theta) = r \sin(\theta)$.

The slope of the tangent line to the graph of $r(\theta)$ at the point (r, θ) is $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}$ provided that

$$\frac{dx}{d\theta} \neq 0 \quad \text{at } (r, \theta).$$

28. Area in Polar Coordinates:

If f is continuous and nonnegative on the interval $[\alpha, \beta]$, $0 < \beta - a < 2\pi$, then the area of the region bounded by

the graph of $r = f(\theta)$ between the radial lines $\theta = \alpha$ and $\theta = \beta$ is given by: $A = -\frac{1}{2} \int_{\alpha}^{\beta} r^2 d\theta$

29. Parametric Form of the Derivative: If a smooth curve C is given by the equations x = f(t) and y = g(t), then

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} \quad \text{and} \quad \frac{d^2y}{dx^2} = \frac{\frac{d}{dt}\left\lfloor\frac{dy}{dx}\right\rfloor}{dx/dt} \quad , \quad \frac{dx}{dt} \neq 0 \quad .$$

- 30. Arc Length in Parametric Form: If a smooth curve C is given by x = f(t) and y = g(t) such that C does not intersect itself on the interval $a \le t \le b$ (except possibly at the endpoints), then the arc length of C over the interval is given by: $s = \int_{-\infty}^{b} \sqrt{(f'(t))^{2} + (g'(t))^{2}} dt$
- 31. Definitions of Velocity and Acceleration: If x and y are twice-differentiable functions of t, and r is a position vector given by $\mathbf{r}(t) = \langle x(t), y(t) \rangle$, then the velocity vector, acceleration vector, and speed at time t are as follows:

 $\overline{v(t)} = \overline{r'(t)} = \langle x'(t), y'(t) \rangle$ velocity: $\vec{a}(t) = \vec{r''}(t) = \langle x''(t), y''(t) \rangle$ acceleration:

speed:

 $\|\vec{v}(t)\| = \|\vec{r}'(t)\| = \sqrt{(x'(t))^2 + (y'(t))^2}$

32. Distance and Total Displacement:

Let $\vec{v}(t) = \langle x'(t), y'(t) \rangle$ be the velocity of a particle, where x'(t) and y'(t) are continuous on [a, b].

The displacement of the particle on [a, b] is:

$$\int_{a}^{b} \vec{v}(t) dt = \left\langle \int_{a}^{b} x'(t) dt, \int_{a}^{b} y'(t) dt \right\rangle$$
$$\int_{a}^{b} \left\| \vec{v}(t) \right\| dt = \int_{a}^{b} \sqrt{\left(x'(t) \right)^{2} + \left(y'(t) \right)^{2}} dt$$

The total distance traveled by the particle on [a, b] is:

	Name
	Date Pd
	AP Calculus BC: Quarter 4 Gateway Exam (20 min) Passing Score = 75% Correct
1.	The Logistic Differential Equation:
	The Logistic Equation:
2.	Area of a Region Between Two Curves:
	If f and g are continuous on [a, b] and $g(x) \le f(x)$ for all x in [a, b], then the area of the region bounded by the
	graphs of f and g and the vertical lines $x = a$ and $x = b$ is: $A =$
3.	The Washer Method: To find the volume of a solid of revolution with the washer method, use one of the following:
	Horizontal axis of revolution on $[a, b]$: $V =$
	Vertical axis of revolution on $[c, d]$: $V =$
4.	Volumes of Solids with Known Cross Sections:
	On [a, b], for cross sections of area taken perpendicular to the x-axis: $V =$
	On [<i>c</i> , <i>d</i>], for cross sections of area taken perpendicular to the <i>y</i> -axis: $V =$
5.	Definition of Arc Length:
	For a smooth curve $y = f(x)$, the arc length of f between a and b is: $s =$
	For a smooth curve $x = a(x)$, the arc length of a between c and d is: $s =$
G	Interaction by Derte:
0.	Integration by Faits.
7	
Τ.	Let f and a be functions that are differentiable on an interval (a, b) containing c except possibly at c itself
	Assume that for all x in (a, b) , except possibly at c itself.
	If and (OR) and .

8.	The <i>n</i> th-Term Test: If, then $\sum_{n=N}^{\infty} a_n$
9.	Geometric Series : A geometric series with ratio <i>r</i> diverges if
	If, then the series converges to the sum $\sum_{n=0}^{\infty} ar^n =$
10.	Definition of <i>n</i> th Taylor Polynomial : If f has n derivatives at c , then the <i>n</i> th Taylor polynomial for f at c is:
	$P_n(x) =$
11.	Lagrange Error Bound: If is the maximum value of between x and c, then:
	$ R_n(x) \leq$
12.	Definition of Power Series:
	If x is a variable, then an infinite series of the form below is called a power series centered at c :
13.	The Ratio Test : Let $\sum_{n=N}^{\infty} a_n$ be a series with nonzero terms. $\sum_{n=N}^{\infty} a_n$ if
	$\sum_{n=N}^{\infty} a_n \qquad \qquad \text{if} \qquad \qquad \text{or} \qquad \qquad .$
	The Ratio Test is inconclusive if
14.	The Integral Test : If f is, and for $x \ge N$ and $a_n = f(n)$,
	then and either or
15.	<i>p</i> -Series: The <i>p</i> -series converges if, and diverges if
16.	Direct Comparison Test : Let $0 < a_n \le b_n$ for all n .
	If converges, then converges. If diverges, then diverges.

17. Limit Comparison Test:

	Suppose that,	, and	, where	_is	and
	Then the two series $\sum_{n=N}^{\infty} a_n$, and $\sum_{n=N}^{\infty} b_n$ either	or		
18.	Alternating Series Test:	Let $a_n > 0$.			
	The alternating series $\sum_{n=N}^{\infty}$	$(-1)^n a_n$ and $\sum_{n=N}^{\infty} (-1)^{n+1} a_n$	if th	e following two o	conditions are met:
	(1) and (2)			
19.	Alternating Series Rema	inder : Let $a_n > 0$. If an alt	ternating series $\sum_{n=0}^{\infty}$	$(-1)^n a_n$ conver	ges to <i>S</i> ,
	and S_N is used to approx	mate the sum, then:			
20.	Definitions of Absolute	and Conditional Converg	jence:		
	$\sum_{n=N}^{\infty} a_n$ is	if	converges.		
	$\sum_{n=N}^{\infty} a_n$ is	if	converges but	diverg	es.
21.	Absolute Convergence:	If the series co	onverges, then the s	series	also converges.
22.	Definition of Taylor Seri	es:			
	If a function f has derivat	ives of all orders at $x = c$,	then the series be	low is called the	Taylor series for $f(x)$ at c .
23.	Power Series for Element	ntary Functions: e ^x =			
24.	Power Series for Element	ntary Functions : $sin(x) =$			
25.	Power Series for Element	ntary Functions: cos(x) =	: 		
26.	Power Series for Eleme	ntary Functions: $\frac{1}{1-x} =$			

27. Slope in Polar Form: Let $r(\theta)$ be a differentiable f	function, with $x(\theta) =$	and $y(\theta) = $
The slope of the tangent line to the graph of $r(\theta)$ a	at the point (r, θ) is	provided that

at (r, θ) .

28. Area in Polar Coordinates:

If f is continuous and nonnegative on the interval $[\alpha, \beta]$, $0 < \beta - a < 2\pi$, then the area of the region bounded by

the graph of $r = f(\theta)$ between the radial lines $\theta = \alpha$ and $\theta = \beta$ is given by: A =

29. Parametric Form of the Derivative: If a smooth curve C is given by the equations x = f(t) and y = g(t), then

 $\frac{dy}{dx} =$ and $\frac{d^2y}{dx^2} =$,

- 30. Arc Length in Parametric Form: If a smooth curve *C* is given by x = f(t) and y = g(t) such that *C* does not intersect itself on the interval $a \le t \le b$ (except possibly at the endpoints), then the arc length of *C* over the interval is given by: s =
- 31. Definitions of Velocity and Acceleration: If x and y are twice-differentiable functions of t, and r is a position vector given by $\mathbf{r}(t) = \langle x(t), y(t) \rangle$, then the velocity vector, acceleration vector, and speed at time t are as follows:

velocity:	=	_	
acceleration:		_	
speed:	= =	_	
32. Distance and T	otal Displacement:		
Let	be the velocity of a particle, where	and	are continuous on [a, b].
The displacement	nt of the particle on [<i>a</i> , <i>b</i>] is:		
The total distance	e traveled by the particle on [a, b] is:		