§2.3 Product and Quotient Rules and Higher-Order Derivatives The Product Rule The Quotient Rule Derivatives of Trigonometric Functions The Tangent Line Problem Higher-Order Derivatives	 Learning Goals: Students will be able to Find the derivatives of functions using the Product and Quotient Rules. Find the derivative of a trigonometric function. Find a higher-order derivative of a function. Find average and instantaneous acceleration. Determine whether a particle is speeding up or slowing down at a particular time. Learning Objectives: Students will be able to
Notes based on: Calculus for AP by Larson & Battaglia. © 2017 Cengage Learning. Calculus, AP Edition, 9th ed. by Larson & Edwards. © 2010 Brooks/Cole, Cengage Learning.	 2.1A Identify the derivative of a function as the limit of a difference quotient. 2.1B Estimate derivatives. 2.1C Calculate derivatives. 2.1D Determine higher order derivatives. 2.3B Solve problems involving the slope of a tangent line. 2.3C Solve problems involving related rates, optimization, rectilinear motion, (<i>BC: and planar motion</i>). 2.3D Solve problems involving rates of change in applied contexts.

The Product Rule	Example: The Product Rule	
THEOREM THE PRODUCT RULE	$\frac{d}{dt}\left[(x^2+3x+1)(4x-3)\right]$	
The product of two differentiable functions <i>f</i> and <i>g</i> is itself differentiable. Moreover, the derivative of <i>fg</i> is the first function times the derivative of the second, plus the second function times the derivative of the first. $\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$	$\frac{d}{dx} \left[x^{3} \cos(x) \right]$	
Alternate version of the Product Rule: $\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + f'(x)g(x)$		

The Quotient Rule	Example: The Quotient Rule
THEOREM THE QUOTIENT RULE	$\frac{d}{x^3-4x+1}$
The quotient f/g of two differentiable functions f and g is itself differentiable at all values of x for which $g(x) \neq 0$. Moreover, the derivative of f/g is given by the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the square of the denominator. $\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}, g(x) \neq 0$ Alternate version of the Quotient Rule: $\frac{d}{dx} \left[\frac{hi}{lo} \right] = \frac{lo \cdot dhi - hi \cdot dlo}{lo^2}$	dx [3x+2]

Example: Higher-Order Derivatives Find the second derivative of $y = \csc(x) + \tan(x)$.	Higher-Order DerivativesIf $s(t)$ represents the position of an object at time t :Velocity function $v(t) = s'(t)$ Speed function $ v(t) = s'(t) $ Acceleration function $a(t) = v'(t) = s''(t)$ Average velocity on $[a, b]$ $\frac{s(b) - s(a)}{b - a}$ Average acceleration on $[a, b]$ $\frac{v(b) - v(a)}{b - a}$

Higher-Order Derivatives		Example: Higher-Order Derivatives
$v < 0 \Leftarrow$ object moves to the left $a > 0 \Rightarrow$ velocity is increasing object slows down (like pressing the brake pedal while driving in reverse)	$v > 0 \Rightarrow$ object moves to the right $a > 0 \Rightarrow$ velocity is increasing object speeds up (like pressing the gas pedal while driving forward)	 A particle moves on the <i>y</i>-axis with position function given by y(t) = -t² + 6t + 10, where t is measured in seconds and y(t) is measured in inches. (a) Find the speed of the particle at time t = 6. Include units in your answer. (b) Find the average acceleration of the particle over the interval [0, 3]. Include units in your answer.
$v < 0 \Leftarrow$ object moves to the left $a < 0 \Leftarrow$ velocity is decreasing object speeds up (like pressing the gas pedal while driving in reverse)	$v > 0 \Rightarrow$ object moves to the right $a < 0 \Leftrightarrow$ velocity is decreasing object slows down (like pressing the brake pedal while driving forward)	

Example: Higher-Order Derivatives

A particle moves on the *x*-axis with position function given by $x(t) = 2e^t - te^t$. Is the particle speeding up or slowing down at time t = 3? Explain your reasoning.