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§2.3 Product and Quotient Rules and Higher-Order Derivatives 
The Product Rule 
The Quotient Rule 
Derivatives of Trigonometric Functions 
The Tangent Line Problem 
Higher-Order Derivatives 

Learning Goals: Students will be able to… 
• Find the derivatives of functions using the Product and Quotient Rules. 
• Find the derivative of a trigonometric function. 
• Find a higher-order derivative of a function. 
• Find average and instantaneous acceleration. 
• Determine whether a particle is speeding up or slowing down at a particular time. 
Learning Objectives: Students will be able to… 
2.1A Identify the derivative of a function as the limit of a difference quotient. 
2.1B Estimate derivatives. 
2.1C Calculate derivatives. 
2.1D Determine higher order derivatives. 
2.3B Solve problems involving the slope of a tangent line. 
2.3C Solve problems involving related rates, optimization, rectilinear motion, (BC: and planar motion). 
2.3D Solve problems involving rates of change in applied contexts. 

The Product Rule 

Alternate version of the Product Rule: [ ]( ) ( ) ( ) ( ) ( ) ( )d f x g x f x g x f x g x
dx

′ ′= +
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The Quotient Rule 

Alternate version of the Quotient Rule: 2
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d
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Example: The Quotient Rule 
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Derivatives of Trigonometric Functions 

 

Proof: [ ] 2
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Example: Derivatives of Trigonometric Functions 
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Example: The Tangent Line Problem 
Given the graphs of f  and ,g  let ( ) ( ) ( ).p x f x g x=   
Find an equation of the line tangent to the graph of 

( )p x  at 9.x =   
(9) (9) (9) 8 2 16
( ) ( ) ( ) ( ) ( )
(9) (9) (9) (9) (9)

8( 1) 2(2) 8 4 4

p f g
p x f x g x f x g x
p f g f g

= = ⋅ =
′ ′ ′= +
′ ′ ′= +

= − + = − + = −

  

tangent line: 16 4( 9)y x− = − −   
  

Higher-Order Derivatives  

 
  

Example: Higher-Order Derivatives 
Find the second derivative of csc( ) tan( ).y x x= +   
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Higher-Order Derivatives 
If ( )s t  represents the position of an object at time :t   
Velocity function    ( ) ( )v t s t′=   
Speed function    ( ) ( )v t s t′=   

Acceleration function   ( ) ( ) ( )a t v t s t′ ′′= =   

Average velocity on [ , ]a b    ( ) ( )s b s a
b a

−
−

  

Average acceleration on [ , ]a b   ( ) ( )v b v a
b a

−
−
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Higher-Order Derivatives 
0 object moves to the left
0 velocity is increasing

object slows down (like pressing the
brake pedal while driving in reverse)

v
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0 object moves to the right
0 velocity is increasing

object speeds up (like pressing the
gas pedal while driving forward)
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0 object moves to the left
0 velocity is decreasing

object speeds up (like pressing the
gas pedal while driving in reverse)
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0 object moves to the right
0 velocity is decreasing

object slows down (like pressing the
brake pedal while driving forward)
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Example: Higher-Order Derivatives 
A particle moves on the -axisy  with position function given by 2( ) 6 10,y t t t= − + +  where t  is 
measured in seconds and ( )y t  is measured in inches. 

(a) Find the speed of the particle at time 6.t =  Include units in your answer. 
(b) Find the average acceleration of the particle over the interval [0, 3]. Include units in your 

answer. 
( ) ( ) 2 6

(6) 2(6) 6 12 6 6 6 inches per second
v t y t t

v
′= = − +

= − + = − + = − =
  

(0) 2(0) 6 0 6 6
(3) 2(3) 6 6 6 0

v
v

= − + = + =
= − + = − + =

  

(3) (0) 0 6 6 2 inches per second per second (or inches per second²)
3 0 3 0 3

v v− − −= = = −
− −

  

Example: Higher-Order Derivatives 
A particle moves on the -axisx  with position function given by ( ) 2 .t tx t e te= −  Is the particle 
speeding up or slowing down at time 3?t =  Explain your reasoning. 
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3 3 3

3

(3) 3 2 0
(3) 3 0

v e e e
a e

= − = − <

= − <

  

The particle is speeding up at time 3t =  because (3) 0v <  and (3) 0a <  have the same sign. 
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